Why focus on stars?

- Central to many astrophysical phenomena
 - synthesize all heavy atoms
 - drive galaxy evolution
 - ▶ at the center of planetary systems
 - used to measure cosmological distances (Cepheids, Type Ia SNe)
 - remnants (WDs, NSs, BHs) are unique laboratories for extreme physics
 - **)** ...
- Many basic principles applicable to other systems
- Can go into reasonable depth in single quarter

Overview of what we will cover in this course Quantitative description of stars

- Radiation concepts:
 - ▶ intensity
 - ▶ flux
 - ▶ luminosity
 - ▶ color

Measuring stellar parameters

- ▶ distances
- velocities
- masses

A billion stars measured by Gaia satellite

Classification and explanation of stellar types

- spectral types
- relationships between stellar mass, luminosity, and temperature

Binary stars and their applications

- ▶ different types of binaries: visual, astrometric, spectroscopic, eclipsing
- measuring orbital parameters
- ▶ measuring stellar masses and radii

Discovering and characterizing extrasolar planets with similar techniques

Modeling the equilibrium structure of stars of different types

Nuclear energy generation in stars

- ▶ understanding the rates of different nuclear reactions the crucial role of quantum tunneling
- ▶ the products of different nuclear reactions: heavy elements, neutrinos, ...

Where do different elements come from?

▶ understanding which elements are produced in the Big Bang, inside stars, in stellar explosions, ...

Different mechanisms of energy transport inside stars

Heat Transfer of Stars

▶ how is energy transported from the nuclear burning core to the surface?

The end points of stellar evolution

▶ what happens when stars run out of nuclear fuel?

White dwarfs

- what supports stars against gravitational collapse when they can no longer produce nuclear energy? quantum degeneracy pressure
- ▶ maximum (Chandrasekhar) mass for WDs ~1.4 M_{sun}

What happens when a WD exceeds the Chandrasekhar mass? Type Ia SNe

Measuring cosmological distances with exploding stars

- ▶ standard(izable) candles: use to measure large cosmic distances
- ▶ mapping the expansion of the Universe discovery of dark energy

Core collapse at the end of a massive star's life

- massive stars burn and synthesize several heavy elements
- ▶ when they reach iron, nuclear fusion no longer produces energy: core collapse

Core collapse supernovae and their remnants

▶ core collapse produces another kind of SN explosions (Type II, Type Ibc)

Neutron stars

the equation of state of nucleardensity matter

 ▶ the Chandrasekhar limit for NSs (neutron degeneracy pressure)
~2-3 M_{sun}

Pulsars

- ▶ ultra-dense, highly magnetized, rapidly rotating (*P*~10⁻³–10 s) neutron stars
- ▶ usually observed in the radio or x-rays
- ▶ tests of Einstein's relativity using binary pulsars

Black holes

- what happens when NSs become too massive to be supported against collapse?
- ▶ the properties and observational manifestations of black holes

High-energy manifestations of accreting black holes

- ▶ accretion disks
- ▶ accretion disk winds and relativistic jets

Gravitational waves from merging black holes

Sept 14, 2015 binary BH signal

