
de Vaucouleurs’ R1/4 law for ellipticals and bulges

I = surface brightness 
R = projected radius 
Re = effective radius enclosing 1/2 of light

M87

A good fit to the light profile of 
many ellipticals and bulges:



Sérsic profile
Generalization of de 
Vaucouleurs’ R1/4 law

n=Sérsic index    (=4 for R1/4) 
!
More luminous galaxies tend to 
have larger n 
!
n=1 gives exponential profile  
!
!
which is a good approximation to 
many spirals



Hernquist profile

Hernquist 90
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Sky projection is close to R1/4 law, 
but 3D mass distribution is 
analytically tractable (unlike R1/4): 
!

!

!

M = total mass 
a = scale radius 
!

Very convenient for theoretical 
models of ellipticals and bulges
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Cosmological N-body simulations  
and  

dark matter halos



The standard Λ Cold Dark Matter cosmology

‣ spectrum of initial density fluctuations 
‣ what the Universe is made out of 
‣ how old it is and how it has expanded in time

Combined with other astronomical 
measurements, the cosmic microwave 
background  tells us: 

Ωb

Ωdm



Introduction

Description of the method
MUSIC (MUlti-Scale Initial Conditions) generates cosmological initial conditions for a hierarchical set of nested regions. 

A detailed description of the method can be found in the code paper Hahn&Abel (2011), http://arxiv.org/abs/1103.6031. 

We kindly refer the reader to that paper for all technical aspects as well as performance and validation of the code.

Cookbook for setting up a zoom simulation with MUSIC
The procedure for setting up a zoom simulation follows typically the procedure of 4 steps, given below. Note that 

resolution levels in MUSIC are specified by their linear power-2 exponent, i.e. a resolution of 1283 cells or particles 

corresponds to level 7 (log2 128=7). We use the term “lower” for levels synonymously with “coarser” and “higher” with 

“finer”.

Run a unigrid dark matter-only pre-flight simulation

In order to set up unigrid initial conditions with MUSIC, select first the desired resolution for this pre-flight simulation. 

Assume we want to run a 1283 simulation, the coarse grid level has to be set to log2 128=7. Since we want to run a 

unigrid simulation, both levelmin and levelmax in section [setup] should be set to 7. Also the coarse grid seed 

needs to be chosen now and must not be changed afterwards. To do this, we set seed[7] in section [random] to the 

desired random seed. This seed determines the large scale structure and we will only add subgrid noise when performing 

refinement later. Now, set the box size, starting redshift, all the cosmological parameters and the input transfer function in 

the respective sections. Finally, select the output plugin in section [output] for the code with which you wish to 

perform this pre-flight simulation. Finally run MUSIC with the configuration file that contains all your settings and start your 

simulation. Note that you also have to explicitly specify a redshift at which to generate the initial conditions. 

MUSIC - User's Manual 3

Density field in a 100 Mpc/h box with two initial levels of 

refinement generated with MUSIC.

1x 4x

16x64x

Example of an N-body simulation of a deeply nested re-

gion of 6 initial levels generated with MUSIC and evolved 

with Gadget-2 to achieve an effective resolution of 81923 

with 11603 particles in the high-res region.

Initial conditions for cosmological simulations
Microwave sky Simulation ICs

Visualization credit: Hahn

Gaussian random field filtered with transfer function to 
model early Universe physics (photon-baryon interactions)



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

N-body simulations
• Discretize mass with N particles 

‣ in cosmology, usually tree or particle-
mesh methods to solve Poisson’s 
equation 

• Naturally adaptive in cosmology



History of N-body simulations
Collisionless 

(cosmological)

Collisional  
(e.g., globulars)

Dehnen & Read 11

Moore’s law



Gravity amplifies primordial fluctuations, forms structures

Density peaks (dark matter halos) are the sites of galaxy formation 

Simplest: dark matter only

Visualization credit: Kravtsov

~100 Mpc



Millennium simulation

Springel+051010 particles, 500 h-1 Mpc



Dark matter halo mass function

based on this formula may contain large errors15. We return below to
the important question of the abundance of quasars at early times.
To track the formation of galaxies and quasars in the simulation,

we implement a semi-analytic model to follow gas, star and super-
massive black-hole processes within the merger history trees of dark
matter haloes and their substructures (see Supplementary Infor-
mation). The trees contain a total of about 800 million nodes, each
corresponding to a dark matter subhalo and its associated galaxies.
This methodology allows us to test, during postprocessing, many
different phenomenological treatments of gas cooling, star for-
mation, AGN growth, feedback, chemical enrichment and so on.
Here, we use an update of models described in refs 16 and 17, which
are similar in spirit to previous semi-analytic models18–23; the
modelling assumptions and parameters are adjusted by trial and
error to fit the observed properties of low-redshift galaxies, primarily
their joint luminosity–colour distribution and their distributions of
morphology, gas content and central black-hole mass. Our use of a
high-resolution simulation, particularly our ability to track the
evolution of dark matter substructures, removes much of the
uncertainty of the more traditional semi-analytic approaches based
onMonte Carlo realizations of merger trees. Our technique provides
accurate positions and peculiar velocities for all the model galaxies. It
also enables us to follow the evolutionary history of individual
objects and thus to investigate the relationship between populations
seen at different epochs. It is the ability to establish such evolutionary
connections that makes this kind of modelling so powerful for
interpreting observational data.

The fate of the first quasars
Quasars are among the most luminous objects in the Universe and
can be detected at huge cosmological distances. Their luminosity is
thought to be powered by accretion onto a central, supermassive
black hole. Bright quasars have now been discovered as far back
as redshift z ¼ 6.43 (ref. 24), and are believed to harbour central

black holes with a mass a billion times that of the Sun. At redshift
z < 6, their co-moving space density is estimated to be
,(2.2 ^ 0.73) £ 1029h3Mpc23 (ref. 25). Whether such extremely
rare objects can form at all in a LCDM cosmology is unknown.
A volume the size of the Millennium Simulation should contain,

on average, just under one quasar at the above space density. Just
what sort of object should be associated with these ‘first quasars’ is,
however, a matter of debate. In the local Universe, it appears that
every bright galaxy hosts a supermassive black hole and there is a
remarkably good correlation between the mass of the central black
hole and the stellar mass or velocity dispersion of the bulge of the
host galaxy26. It would therefore seem natural to assume that, at any
epoch, the brightest quasars are always hosted by the largest galaxies.
In our simulation, ‘large galaxies’ can be identified in various ways,
for example, according to their dark matter halo mass, stellar mass or
instantaneous star-formation rate.We have identified the ten ‘largest’
objects defined in these three ways at redshift z ¼ 6.2. It turns out
that these criteria all select essentially the same objects: the eight
largest galaxies by halo mass are identical to the eight largest galaxies
by stellar mass; only the ranking differs. Somewhat larger differences
are present when galaxies are selected by star-formation rate, but
the four first-ranked galaxies are still among the eight identified
according to the other two criteria.
In Fig. 3, we illustrate the environment of a ‘first quasar’ candidate

in our simulation at z ¼ 6.2. The object lies on one of the most
prominent dark matter filaments and is surrounded by a large
number of other, much fainter galaxies. It has a stellar mass of
6.8 £ 1010h21M(, the largest in the entire simulation at z ¼ 6.2, a
dark matter virial mass of 3.9 £ 1012h21M(, and a star-formation
rate of 235M(yr21. In the local Universe, central black-hole masses
are typically,1/1,000 of the bulge stellar mass27, but in the model we
test here these massive early galaxies have black-hole masses in the
range 108–109M(, significantly larger than low-redshift galaxies of
similar stellar mass. To attain the observed luminosities, they must
convert infalling mass to radiated energy with a somewhat higher
efficiency than the ,0.1c 2 expected for accretion onto a non-
spinning black hole (where c is the speed of light in vacuum).
Within our simulation we can readily address fundamental ques-

tions such as: Where are the descendants of the early quasars today?
What were their progenitors? By tracking themerging history trees of
the host haloes, we find that all our quasar candidates end up today as
central galaxies in rich clusters. For example, the object depicted in
Fig. 3 lies, today, at the centre of the ninth most massive cluster in the
volume, of mass M ¼ 1.46 £ 1015h21M(. The candidate with
the largest virial mass at z ¼ 6.2 (which has stellar mass
4.7 £ 1010h21M(, virial mass 4.85 £ 1012h21M(, and star-for-
mation rate 218M(yr21) ends up in the secondmostmassive cluster,
ofmass 3.39 £ 1015h21M(. Following themerging tree backwards in
time, we can trace our quasar candidate back to redshift z ¼ 16.7,
when its host halo had a mass of only 1.8 £ 1010h21M(. At this
epoch, it is one of just 18 objects that we identify as collapsed systems
with $20 particles. These results confirm the view that rich galaxy
clusters are rather special places. Not only are they the largest
virialized structures today, they also lie in the regions where the
first structures developed at high redshift. Thus, the best place to
search for the oldest stars in theUniverse or for the descendants of the
first supermassive black holes is at the centres of present-day rich
galaxy clusters.

The clustering evolution of dark matter and galaxies
The combination of a large-volume, high-resolution N-body simu-
lation with realistic modelling of galaxies enables us to make precise
theoretical predictions for the clustering of galaxies as a function of
redshift and intrinsic galaxy properties. These can be compared
directly with existing and planned surveys. The two-point correlation
function of our model galaxies at redshift z ¼ 0 is plotted in Fig. 4
and is compared with a recent measurement from the 2dFGRS

Figure 2 | Differential halo number density as a function of mass and
epoch. The function n(M, z) gives the co-moving number density of
haloes less massive than M. We plot it as the halo multiplicity function
M2r21dn/dM (symbols with 1-j error bars), where r is the mean density of
the Universe. Groups of particles were found using a friends-of-friends
algorithm6 with linking length equal to 0.2 of the mean particle separation.
The fraction of mass bound to haloes of more than 20 particles (vertical
dotted line) grows from 6.42 £ 1024 at z ¼ 10.07 to 0.496 at z ¼ 0. Solid
lines are predictions from an analytic fitting function proposed in previous
work11, and the dashed blue lines give the Press–Schechter model14 at
z ¼ 10.07 and z ¼ 0.
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# halos per volume per mass 
interval 
!
Dimensionless when expressed 
in terms of ‘multiplicity function’ 
!

Massive halos >M* 
exponentially suppressed (e.g., 
galaxy clusters today) 
!
MW halo ≈1012 Msun 
!
Press-Schechter is analytic 
derivation; better fits given by 
Seth-Tormen function



Dark matter halo mass function

Press-Schechter (1974) analytic theory Seth-Mo-Tormen (2001) fit



(Nearly) universal dark matter halo profile
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Navarro, Frenk, White 96

NFW profile

fits halos of all masses in N-
body sims



19
96
Ap
J.
..
46
2.
.5
63
N

Navarro, Frenk, White 96

Concentration

At z=0, lower-mass halos are 
more concentrated
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where Dc(z ) is a spherical overdensity of the virialized halo within

rvir at z, in units of the critical density of the universe at z, rc(z ). In
the Einstein–de Sitter universe model, Dc(z ) is independent of z,

and is exactly 18p2
. 178. Lacey & Cole (1993) and Nakamura &

Suto (1997) provide Dc(z ) for arbitrary cosmological models. In

our cosmological model with Vm ¼ 0:3 and VL ¼ 0:7, the

spherical overdensity of the virialized halo at the present is 100:

Dcðz ¼ 0Þ ¼ 100.

The only parameter in our framework is the concentration

parameter, c. Many N-body simulations show that c decreases

gradually with the virial mass. Assuming that the mass dependence

of c is known, for example, from N-body simulations (Eke,

Navarro & Steinmetz 2000; Bullock et al. 2001), or from the non-

linear dark matter power spectrum (Seljak 2000), one can predict

rdm(r ) for any Mvir, any z, and in principle any cosmological

model. This is the main advantage of the universal dark matter

density profile paradigm, and explains its popularity in recent

work. Although the universal profile does not explain the dark

matter profiles on the object-to-object basis (Jing & Suto 2000;

Klypin et al. 2001), it is still successful in fitting the averaged form

of the dark matter density profiles with reasonable accuracy.

So far, we have discussed the functional dependence of the

profile on the characteristic radius. For a complete description,

however, we need the functional form of ydm(x ). We adopt

ydmðxÞ ¼
1

xað11 xÞ32a : ð7Þ

The asymptotic profile in the x @ 1 regime is ydmðx @ 1Þ ¼ x23.

This is the most common form found in the N-body simulations,

although scatter around this is quite significant (Thomas et al.

2001). In the x ! 1 regime, we have ydmðx ! 1Þ ¼ x2a.

Particularly, a ¼ 1 corresponds to the profile proposed by Navarro

et al. (1996, 1997), while a ¼ 3=2 corresponds to the one proposed

by Moore et al. (1998) and Jing & Suto (2000). We will focus on

these two particular cases throughout this paper.

Using these parameters, Suto et al. (1998) have evaluated the

relevant integrals for a ¼ 1:

mðxÞ ¼ ln ð11 xÞ2
x

11 x
; ð8Þ

ðx

0

du
mðuÞ
u 2

¼ 12
ln ð11 xÞ

x
; ð9Þ

and for a ¼ 3=2 :

mðxÞ ¼ 2 ln ð
ffiffiffi

x
p

1

ffiffiffiffiffiffiffiffiffiffiffi

11 x
p

Þ2 2

ffiffiffiffiffiffiffiffiffiffiffi

x

11 x

r

; ð10Þ

ðx

0

du
mðuÞ
u 2

¼ 2
2 ln ð

ffiffiffi

x
p

1
ffiffiffiffiffiffiffiffiffiffiffi

11 x
p

Þ
x

1 2

ffiffiffiffiffiffiffiffiffiffiffi

11 x

x

r

: ð11Þ

We use
Ð x

0 duu
22mðuÞ in the next section.

There are several different empirical fitting formulae for the

concentration parameter in the literature. A recent compilation is

found in Eke et al. (2001). For a ¼ 1, we will use the one of Seljak

(2000),

c ¼ 6
Mvir

1014h21 M(

$ %21=5

: ð12Þ

For a ¼ 3=2, we reduce the concentration parameter by a factor of

1.7 (Seljak 2000; Klypin et al. 2001).

2.2 Overdensity radius and mass

X-ray observations are not sufficiently sensitive to measure X-ray

surface brightness and gas temperature profiles out to the virial

radius. Therefore, instead of measuring the virial mass, many

authors measure the mass within an overdensity radius, rd, at which

the dark matter density is d times the critical density of the

universe:

rd ;
Mð# rdÞ

ð4p=3ÞdrcðzÞ

& '1=3

: ð13Þ

Note that the virial radius at z ¼ 0 corresponds to r100 in our

cosmological model, as Dcð0Þ ¼ 100 in equation (6). Since we

assume that the dark matter density profile, and hence the mass

profile, is known, we can relate Mvir to Mð# rdÞ by solving the

equation

Mð# rdÞ ¼
mðrd/ rsÞ
mðcÞ

& '

Mvir ¼
mðcrd/ rvirÞ

mðcÞ

& '

Mvir: ð14Þ

Fig. 1 plotsMð# r500Þ as a function ofMvir for a ¼ 1 and 3/2. The

mass dependence solely arises from the mass dependence of

the concentration parameter given by equation (12). Since we

will be primarily looking at haloes with mass between 1013

and 1015 h 21M(, the relation between the two is roughly

Mð# r500Þ , Mvir/2. The mass measurement with the gas density

profiles out to r500 is thought to be accurate (e.g. Evrard, Metzler &

Navarro 1996); this is why this radius has been frequently used in

the literature. Therefore, we will use r500 and Mð# r500Þ to

compare our theoretical predictions with observations.

Fig. 1 also plots a ratio of r500 to the virial radius as a function of

Mvir. One finds that r500 is half the virial radius. Note that there is

some ambiguity in the definition of the virial radius. Some authors

use a fixed overdensity, d, regardless of cosmology, and others use

the spherical collapse value, Dc, that we use.

Figure 1. Ratio of the virial mass, Mvir, to the overdensity mass at r500,

M500;Mð# r500Þ, as a function ofMvir. The ratio of r500 to the virial radius,

rvir, is also shown. The solid lines represent a ¼ 1, while the dashed lines

represent a ¼ 3=2.

Gas density and temperature profile 1355

q 2001 RAS, MNRAS 327, 1353–1366

Concentration correlates with halo mass

Navarro, Frenk, White 96

Dark matter halos profiles form 
an (approximately) one-

parameter family 
!

Parameter is virial mass 
(equivalently, virial radius)

Seljak 2000:



In CDM simulations, 
NFW profile emerges 
independent of 
cosmological 
parameters (e.g., Ωm≣Ω0) 
and power spectrum of 
initial conditions 
(spectral index n) 
!
→ attractor solution? 
!
Not well understood, but 
interesting proposed 
explanations, e.g. 
Lithwick & Dalal 11

NFW profile is a generic outcome of CDM models496 NAVARRO, FRENK, & WHITE Vol. 490

FIG. 2.ÈDensity proÐles of one of the most massive halos and one of the least massive halos in each series. In each panel, the low-mass system is
represented by the leftmost curve. In the SCDM and CDM" models, radii are given in kiloparsecs (scale at top), and densities are in units of 1010 kpc~3.M

_In all other panels, the units are arbitrary. The density parameter, and the value of the spectral index, n, are given in each panel. The solid lines are Ðts to)

0
,

the density proÐles using The arrows indicate the value of the gravitational softening. The virial radius of each system is in all cases 2 orders ofeq. (1).
magnitude larger than the gravitational softening.

P3M simulation, together with extra high frequency waves
added to Ðll out the power spectrum between the Nyquist
frequencies of the old and new particle grids. The regions
beyond the ““ high-resolution ÏÏ box are coarsely sampled
with a few thousand particles of radially increasing mass in
order to account for the large-scale tidal Ðelds present in the
original simulation.

This procedure ensures the formation of a clump similar
in all respects to the one selected in the P3M run, except for
the improved numerical resolution. The size of the high-
resolution box scales naturally with the total mass of each
system, and as a result all resimulated halos have about the
same number of particles within the virial radius at z\ 0,
typically between 5000 and 10,000. The extensive tests pre-
sented in et al. indicate that this number ofNavarro (1996)
particles is adequate to resolve the structure of a halo over
approximately two decades in radius. We therefore choose
the gravitational softening, to be 1% of the virial radiush

g
,

in all cases. (This is the scale length of a spline softening ; see
& White for a deÐnition.) The tree codeNavarro 1993

carries out simulations in physical, rather than comoving,
coordinates and uses individual time steps for each particle.
The minimum time-step depends on the maximum density
resolved in each case, but it was typically 10~5H

0
~1.

As discussed in et al. numerically con-Navarro (1996),
vergent results require that the initial redshift of each run,

should be high enough that all resolved scales in thez
init

,
initial box are still in the linear regime. In order to satisfy
this condition, we chose so that the median initial dis-z

initplacement of particles in the high-resolution box was
always less than the mean interparticle separation. Prob-
lems with this procedure may arise if is so high that thez

initgravitational softening (which is kept Ðxed in physical
coordinates) becomes signiÐcantly larger that the mean
initial interparticle separation. We found this to be a
problem only for the smallest masses, in theM [ M*,
n \ 0, model. In this case, the initial redshift pre-)

0
\ 0.1

scribed by the median displacement condition is z
init

[ 700,
and the gravitational softening is then a signiÐcant fraction
of the initial box. This can a†ect the collapse of the earliest

NFW97



Aquarius simulations

Springel+08

6 Mh~1012 Msun (zoomed in) halos, ultra-high res. (up to 109 particles within Rvir)



Einasto profile                 is better fit at small radiusDiversity and similarity of simulated CDM haloes 27

Figure 3. Left-hand panel: spherically averaged density profiles of all level-2 Aquarius haloes. Density estimates have been multiplied by r2 in order to
emphasize details in the comparison. Radii have been scaled to r−2, the radius where the logarithmic slope has the ‘isothermal’ value, −2. Thick lines show
the profiles from r

(7)
conv outwards; thin lines extend inwards to r

(1)
conv. For comparison, we also show the NFW and M99 profiles, which are fixed in these scaled

units. This scaling makes clear that the inner profiles curve inwards more gradually than NFW, and are substantially shallower than predicted by M99. The
bottom panels show residuals from the best fits (i.e. with the radial scaling free) to the profiles using various fitting formulae (Section 3.2). Note that the Einasto
formula fits all profiles well, especially in the inner regions. The shape parameter, α, varies significantly from halo to halo, indicating that the profiles are not
strictly self-similar: no simple physical rescaling can match one halo on to another. The NFW formula is also able to reproduce the inner profiles quite well,
although the slight mismatch in profile shapes leads to deviations that increase inwards and are maximal at the innermost resolved point. The steeply cusped
Moore profile gives the poorest fits. Right-hand panel: same as the left, but for the circular velocity profiles, scaled to match the peak of each profile. This
cumulative measure removes the bumps and wiggles induced by substructures and confirms the lack of self-similarity apparent in the left-hand panel.

α fixed to a single value, residuals are smaller and have less radial
structure than those from either NFW or M99.

We show this in Fig. 4, where we plot the minimum-Q(Qmin)
values of the best Einasto fits for all six level-2 Aquarius haloes,
as a function of the shape parameter α. For given value of α, the
remaining two free parameters of the Einasto formula are allowed to
vary in order to minimize Q2. Different line types correspond to dif-
ferent numbers of bins used to construct the profile (from 20 to 50),
chosen to span in all cases the same radial range, 0.01 < r/r−2 < 5,
a factor of 500 in radius. Minimum-Q values are computed using a
similar procedure for the NFW and M99 formulae, and are shown,
for each halo, with symbols of corresponding colour.

In terms of Qmin, Einasto fits are consistently superior to NFW
or M99, whether or not the α parameter is adjusted freely. For
example, for fixed α = 0.15, all Einasto best fits have minimum-Q
values below ∼0.03. For comparison, best NFW and M99 fits have
an average ⟨Qmin⟩ ∼ 0.06 and 0.095, respectively. These numbers
correspond to Nbins = 20, but they are rather insensitive to Nbins, as
may be judged from the small difference between the various lines
corresponding to each halo in Fig. 4.

We emphasize that, although the improvement obtained with
Einasto’s formula is significant, NFW fits are still excellent, with a
typical rms deviation of just ∼6 per cent over a range of 500 in ra-
dius. The use of the NFW formula may thus be justified for applica-
tions where this level of accuracy is sufficient over this radial range.

When α is adjusted as a free parameter, ⟨Qmin⟩ ∼ 0.018 for
Einasto fits. Furthermore, there is, for each halo, a well-defined
value of α that yields an absolute minimum in Q. The Q-dependence
on α about this minimum is roughly symmetric and, as expected,
nearly independent of the number of bins used in the profile. The

Figure 4. Minimum-Q values as a function of the Einasto parameter α for
best fits to all level-2 halo profiles in the radial range 0.01 < r/r−2 < 5.
Colours identify different haloes, and line types identify the number of
bins chosen for the profile. The minimum-Q values obtained for NFW and
M99 best fits are also shown, and are plotted at arbitrary values of α for
clarity. Note that Einasto fits are consistently better than NFW which are
consistently better than M99, and that a significant improvement in Q is
obtained when letting α vary in the Einasto formula. Q is approximately
independent of the number of bins used in the profile, and is minimized for
different values of α for each individual halo (see the text for further details).

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 402, 21–34
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2000; Fukushige & Makino 2001; Klypin et al. 2001; Jing & Suto
2002; Fukushige & Makino 2003; Power et al. 2003; Fukushige,
Kawai & Makino 2004; Navarro et al. 2004; Diemand et al. 2005;
Stoehr 2006; Knollmann, Power & Knebe 2008).

It has often been claimed that the inner cusps of haloes and sub-
haloes may have slopes less than −1, with some studies even propos-
ing an asymptotic slope of −1.5 (Moore et al. 1999b; Fukushige
& Makino 2001). For main haloes this proposition has been ruled
out in recent years by newer generations of simulations. Neverthe-
less, the idea that the asymptotic slope is typically steeper than −1
(e.g. ∼−1.2) is still widespread and has been reiterated in recent
papers, even though this is clearly inconsistent with e.g. Fig. 4 or
the numerical data in Navarro et al. (2004).

With respect to the density profiles of subhaloes, the situation is
even more unclear. So far few studies have examined this question
directly. Stoehr (2006) found that the circular velocity curves of
subhaloes are best fitted by a parabolic function relating log V to
log r, implying that the density profiles become shallower in the
centre than NFW. On the other hand, Diemand et al. (2008) recently
argued that subhaloes have steep cusps with a mean asymptotic slope
of −1.2.

We want to emphasize from the outset that the nature of halo and
subhalo density profiles, becoming gradually and monotonically
shallower towards the centre, makes it easy to arrive at the wrong
conclusion for the structure of the inner cusp. Almost all numerical
simulations to date have been able to produce demonstrably con-
verged results for the density profile only in regions where the local
slope is significantly steeper than −1. They have also all shown that
the slope at the innermost measured point is significantly shallower
than at radii a factor of a few further out. Thus, although no slope as
shallow as −1 has been found, there is also no convincing evidence
that the values measured are close to the asymptotic value, if one
exists. Most claims of steep inner cusp slopes are simply based on
the assertion that the slope measured at the innermost resolved point
continues all the way to the centre.

Navarro et al. (2004) argued that the local logarithmic slope of
halo profiles changes smoothly with radius and is poorly fitted by
models like those of NFW or Moore that tend to an asymptotic
value on small scales. They showed that in their simulation data the
radial change of the local logarithmic slope can be well described
by a power law in radius, of the form

d log ρ

d log r
= −2

(
r

r−2

)α

, (14)

which corresponds to a density profile

ρ(r) = ρ−2 exp
{

− 2
α

[(
r

r−2

)α

− 1
]}

. (15)

Here ρ−2 and r−2 are the density and radius at the point where the
local slope is −2. This profile was first used by Einasto (1965) to
describe the stellar halo of the Milky Way, so we refer to it as the
Einasto profile. The introduction of a shape parameter, α may be
expected, of course, to provide improved fits, but we note that fixing
α ∼ 0.16 gives a two-parameter function which still fits mean halo
profiles much better than the NFW form over a wide range of halo
masses (i.e. with maximum residuals of a few per cent rather than
10 per cent; Gao et al. 2007). Further evidence for a profile where
local slope changes gradually has been presented by Stoehr et al.
(2003); Graham et al. (2006); Stoehr (2006). For reference, we note

that the enclosed mass for the Einasto profile is

M(r) =
4πr3

−2ρ−2

α
exp

(
3 ln α + 2 − ln 8

α

)
γ

[
3
α

,
2
α

(
r

r−2

)α]
,

(16)
where γ (a, x) is the lower incomplete gamma function. For a value
of α = 0.18 the radius where the maximum circular velocity peaks
is given by rmax = 2.189 r−2, and the maximum circular velocity is
related to the parameters of the profile by V 2

max = 11.19Gr2
−2 ρ−2.

No published simulation to date has had enough dynamic range
to measure the logarithmic slope of the density profile in the region
where the Einasto model would predict it to be shallower than −1,
so only indirect arguments could be advanced for this behaviour
(Navarro et al. 2004). This situation has changed with the Aquarius
Project, as can be seen from Fig. 4, and in Navarro et al. (2008)
we provide a detailed analysis of this question. In the following,
we focus on the density profiles of dark matter subhaloes, where
the available particle number is, of course, much smaller. Our best
resolved subhaloes in the Aq-A-1 simulation contain more than 10
million particles, allowing a relatively precise characterization of
their density profiles. Until recently, such particle numbers repre-
sented the state of the art for simulations of main haloes.

In Fig. 22, we show spherically averaged density profiles for nine
subhaloes within the Aq-A halo. For each we compare up to five
different resolutions, covering a factor of ∼1835 in particle mass.
The density profiles line up quite well outside their individual res-
olution limits, as predicted by the convergence criterion of Power
et al. (2003) in the form given in equation (3). Individual profiles
in the panels are plotted as thick solid lines at radii where conver-
gence is expected according to this criterion, but they are extended
inwards as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii marked by
vertical dashed lines). These density profiles are based on particles
that are gravitationally bound to the subhaloes, but for comparison
we also show a profile for each subhalo that includes all the mass
(i.e. including unbound particles; thick dashed lines). It is clear
that the background density dominates beyond the ‘edge’ of each
subhalo. It is therefore important that this region is excluded when
fitting analytic model density profiles to the subhaloes.

In making such fits, we restrict ourselves to the radial range
between the convergence radius (equation 3) and the largest radius
where the density of bound mass exceeds 80 per cent of the total
mass density. The density profiles themselves are measured in a set
of radial shells spaced equally in log r. To define the best fit, we
minimize the sum of the squared differences in the log between
measurement and model, i.e. we characterize the goodness of fit by
a quantity

Q2 = 1
Nbins

∑

i

[ln ρi − ln ρmodel(ri)]2, (17)

where the sum extends over all bins i. We then minimize Q with
respect to the parameters of the model profile. We have included
such fits as thin solid lines in Fig. 22, based on the Einasto profile,
allowing the third parameter α to vary as well. The resulting values
of α and the maximum circular velocities of the subhaloes, as well
as their mass and distance to the main halo’s centre are shown as
labels in the individual panels.

It is clear from Fig. 22 that the Einasto profile provides a good
description of subhalo radial density profiles, but due to the large
dynamic range on the vertical axis combined with the narrow radial
range over which the density profile can be fitted, it is not clear in

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 391, 1685–1711

 by guest on Septem
ber 30, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Note: Einasto is Sérsic with I replace by ρ and R (projected) replaced by r (3D)



Dark matter substructure

See Mike’s review.  
How many sub-halos in MW? 

Extrapolations 
!

Important for dark matter annihilation predictions, 2-body 
so sensitive to boost factor

The Aquarius Project 1697

Einasto profile (a fit to our measurements yields a shape parameter
α = 0.678 and scale radius r−2 =199 kpc = 0.81 r200). It is thus
tempting to conjecture that this behaviour continues to (arbitrarily)
small subhalo masses. If true, an interesting corollary is that there
must be a smooth dark matter component which dominates the inner
regions of haloes. Only the outer parts may have a substantial mass
fraction in lumps (see also Fig. 7). This contrasts with previous
speculations (Calcáneo-Roldán & Moore 2000; Moore et al. 2001)
that all the mass of a halo may be bound in subhaloes.

Further light on this question is shed by Fig. 12, where we show
the local mass fraction in subhaloes as a function of radius. In the
top panel, we compare results for our six different haloes, with the
radial coordinate normalized by r50. While there is some scatter
between the different haloes, the general behaviour is rather similar
and shows a rapid decline of the local mass fraction in substructures
towards the inner parts of each halo. The mean of the six simulations
(thick red line) is well fitted by a gently curving power law. It can
be parametrized by

fsub = exp
[
γ + β ln(r/r50) + 0.5 α ln2(r/r50)

]
, (11)

with parameters α = −0.36, β = 0.87 and γ = −1.31. This fit
is shown in the upper two panels of Fig. 12 as a thin black line.
The middle panel is the same measurement, but for all the different
resolution simulations of the Aq-A halo, while the bottom panel
is the corresponding cumulative plot. These two panels give an
impression of how well numerical convergence is achieved for this
quantity.

An interesting implication from Fig. 12 is an estimate of the frac-
tion of the mass in substructures near the solar circle (marked by a
vertical dashed line). At r = 8 kpc, the expected local mass fraction
in substructure has dropped well below 10−3. This measurement ap-
pears converged, and accounting for unresolved substructure does
not raise the fraction above 10−3 (compare Fig. 7). The dark mat-
ter distribution through which the Earth moves should therefore be
mostly smooth, with only a very small contribution from gravita-
tionally bound subhaloes.

4 SU B H A L O E S I N S I D E S U B H A L O E S

In our simulations, we find several levels of substructure within
substructure. Fig. 13 illustrates this by showing individually six of
the largest Aq-A-1 subhaloes in enlarged frames. Clearly, all of these
subhaloes have embedded substructures. Sometimes these second-
generation subhaloes contain a further (third) level of substructure
and, in a few cases, we even find a fourth generation of subhaloes
embedded within these. An example is given in the bottom row of
Fig. 13, which zooms recursively on regions of the subhalo labelled
‘f’ in the top left-hand panel. As shown in the bottom left-hand panel,
subhalo ‘f’ has several components, each of which has identifiable
subcomponents; we are able to identify up to four levels of this
hierarchy of substructure in this system. We note that the hierarchy
of nested structures is established directly by the recursive nature of
the SUBFIND algorithm; at each level, a given substructure and its
parent structure are surrounded by a common outer density contour
that separates them from the next level in the hierarchy.

It is important to quantify in detail the hierarchical nature of
substructure, since this may have a number of consequences re-
garding indirect and direct dark matter search strategies. Recently,
Shaw et al. (2007) suggested that the (sub)substructure distribution
in subhaloes might be a scaled version of the substructure distri-
bution in main haloes. This claim has been echoed by Diemand
et al. (2008), who report roughly equal numbers of substructures
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Figure 12. The mass fraction in subhaloes as a function of radius. In the
top panel, we show results for the local mass fraction in substructures for
our six different haloes, as a function of radius normalized by r50. The
thick solid line shows the average of all the runs. In the middle panel, we
consider the same quantity for the different resolution simulations of the Aq-
A halo, while in the bottom panel we show the corresponding cumulative
substructure fractions in the Aq-A halo. The solid line in the two upper panels
is an empirical fit with a slowly running power-law index. The vertical dotted
lines at 8 kpc in the middle and bottom panels mark the position of the solar
circle; here the expected local mass fraction in subhaloes has dropped well
below 10−3. The outer vertical dotted lines mark r50 for the Aq-A halo.
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Cumulative mass fraction in sub-halos

≈10% halo mass in sub-halos
Springel+08

sub-halos get disrupted by tidal 
forces as they sink into parent halos 

owing to dynamical friction 



FIG. 4.ÈProperties of satellite systems within 200 h~1 kpc from the
host halo. T op: The three-dimensional rms velocity dispersion of satellites
vs. the maximum circular velocity of the central halo. Solid and open
circles denote "CDM and CDM halos, respectively. The solid line is the
line of equal satellite rms velocity dispersion and the circular velocity of the
host halo. Middle : The number of satellites with circular velocity larger
than 10 km s~1 vs. circular velocity of the host halo. The solid line shows a
rough approximation presented in the legend. Bottom: The cumulative
circular VDF of satellites. Solid triangles show average VDF of MW and
Andromeda satellites. Open circles present results for the CDM simula-
tion, while the solid curve represents the average VDF of satellites in the
"CDM simulation for halos shown in the upper panels. To indicate the
statistics, the scale on the right y-axis shows the total number of satellite
halos in the "CDM simulation. Note that while the numbers of massive
satellites ([50 km s~1) agree reasonably well with the observed number of
satellites in the Local Group, models predict about 5 times more lower
mass satellites with km s~1.Vcirc \ 10È30

FIG. 5.ÈSame as in Fig. 4, but for satellites within 400 h~1 kpc from the
center of a host halo. In the bottom panel we also show the cumulative
velocity function for the Ðeld halos (halos outside of 400 h~1 kpc spheres
around seven massive halos), arbitrarily scaled up by a factor of 75. The
di†erence at large circular velocities km s~1 is not statisticallyVcirc [ 50
signiÐcant. Comparison between these two curves indicates that the veloc-
ity functions of isolated and satellite halos are very similar. As for the
satellites within the central 200 h~1 kpc (Fig. 4), the number of satellites in
the models and in the Local Group agrees reasonably well for massive
satellites with km s~1 but disagrees by a factor of 10 for low-Vcirc [ 50
mass satellites with km s~1.Vcirc \ 10È30

TABLE 3

SATELLITES IN "CDM MODEL INSIDE R \ 200/400 h~1 kpc FROM CENTRAL HALO

Halo Vcirc Halo Mass Vrms Vrotation
(km s~1) (h~1M

_
) Number of Satellites Fraction of Mass in Satellites (km s~1) (km s~1)

140.5 . . . . . . 2.93 ] 1011 9/15 0.053/0.112 99.4/94.4 28.6/15.0
278.2 . . . . . . 3.90 ] 1012 39/94 0.041/0.049 334.9/287.6 29.8/11.8
205.2 . . . . . . 1.22 ] 1012 27/44 0.025/0.051 191.7/168.0 20.0/11.3
175.2 . . . . . . 6.26 ] 1011 5/10 0.105/0.135 129.1/120.5 41.5/45.2
259.5 . . . . . . 2.74 ] 1012 24/52 0.017/0.029 305.0/257.3 97.1/16.8
302.3 . . . . . . 5.12 ] 1012 37/105 0.055/0.112 394.6/331.6 39.4/15.7
198.9 . . . . . . 1.33 ] 1012 24/58 0.048/0.049 206.1/169.3 17.7/12.1
169.8 . . . . . . 7.91 ] 1011 17/26 0.053/0.067 162.8/156.0 9.3/5.0

The missing satellites "problem"

No longer a real "problem": more faint dwarfs now detected, baryonic effects (photoionization, stellar 
feedback) can suppress dwarf galaxy formation in low-mass halos (e.g., Brooks+12)

"Cosmological models thus predict that a halo the size of our Galaxy should have about 50 dark 
matter satellites with circular velocity greater than 20 km s-1 and mass greater than 3×108 Msun within 
a 570 kpc radius. This number is significantly higher than the approximately dozen satellites actually 

observed around our Galaxy.” (Klypin+99)



Populating halos with galaxies
Three approaches to connect N-
body simulations to galaxies: 
!

‣ empirical halo-based models 
‣ semi-analytic models 
‣ hydro simulations 

!

Now comparably successful at 
producing galaxy populations 
broadly consistent with 
observations but different degrees 
of predictive power and important 
differences in detail (e.g. mass-
metallicity relation)

Frontier in galaxy formation is now to replace model parameters with 
explicit, physical models for all the important processes shaping galaxies
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Figure 4:

Galaxy stellar mass function at redshifts z ∼ 0–4. In the z = 0.1, z = 1, and z = 2 panels, black square
symbols show a double-Schechter fit to a compilation of observational estimates. Observations included
in the fit are: z = 0.1 – Baldry, Glazebrook & Driver (2008), Moustakas et al. (2013); z = 1 and z = 2
panels – Tomczak et al. (2014), Muzzin et al. (2013). The fits shown at z = 1 and z = 2 are interpolated
to these redshifts from adjacent redshift bins in the original published results. The formal quoted 1σ
errors on the estimates shown in these three panels are comparable to the symbol size, and are not
shown for clarity (the actual uncertainties are much larger, but are difficult to estimate accurately). In
the z = 0.1 panel, the estimates of Bernardi et al. (2013) are also shown (open gray circles). In the
z = 4 panel we show estimates from Duncan et al. (2014, triangles), Caputi et al. (2011, crosses),
Marchesini et al. (2010, circles, for z = 3–4), and Muzzin et al. (2013, pentagons, z = 3–4). Solid colored
lines show predictions from semi-analytic models: SAGE (Croton et al. in prep, dark blue), Y. Lu SAM
(Lu et al. 2013, magenta), GALFORM (Gonzalez-Perez et al. 2014, green), the Santa Cruz SAM (Porter
et al. 2014, purple), and the MPA Millennium SAM (Henriques et al. 2013). The dotted light blue line
shows the Henriques et al. (2013) SAM with observational errors convolved (see text). Colored dashed
lines show predictions from numerical hydrodynamic simulations: EAGLE simulations (Schaye et al.
2014, dark red), ezw simulations of Davé and collaborators (Davé et al. 2013, bright red) and the
Illustris simulations (Vogelsberger et al. 2014b, orange).

brush sense the model predictions are generally encouraging. A very general prediction of

ΛCDM-based models is that galaxies built up their stellar mass gradually over time, which

is supported by observations. All models predict efficient early star formation (z >∼ 4) in low
mass halos, and steep stellar mass and rest-UV luminosity functions at these early epochs,

in agreement with observations. Models including AGN feedback or heuristic quenching
predict that massive galaxies formed earlier and more rapidly than lower mass galaxies.

This is again in qualitative agreement with observations. Most models even demonstrate

34 Somerville & Davé

Somerville & Davé review, in prep.  



Abundance matching

Assume monotonic relationship 
between stellar mass and dark 
matter halo mass, i.e. 
!

in given volume, highest stellar 
mass is assigned to most 
massive dark halo, … 
!

Comparison of stellar mass  
and dark matter halo mass 
functions yields M★/Mhalo 

relationship

906 MOSTER ET AL. Vol. 710

Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M⊙–1011.85 M⊙) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.

Moster+10



Abundance matching result at z=0

stellar 
feedback

AGN 
feedback?

No. 2, 2010 STELLAR-TO-HALO MASS RELATIONSHIP 909

Figure 4. Derived relation between stellar mass and halo mass. The light shaded
area shows the 1σ region while the dark and light shaded areas together show
the 2σ region. The upper panel shows the SHM relation, while the lower panel
shows the SHM ratio.

mainly the slope of the low mass end of the SMF, it is strongly
related to the parameter α of the Schechter function. A small
value of β corresponds to a high value of α.

If we change γ , this mainly impacts the slope of the massive
end of the SMF. For larger values of γ than for its best-fit value,
the slope of the massive end becomes steeper. As γ affects
mainly the slope of the massive end of the SMF, it is not coupled
to a parameter of the Schechter function though it is related to
the high-mass cutoff, assumed to be exponential in a Schechter
function.

Figure 5 shows the contours of the two-dimensional proba-
bility distributions for the parameters pairs. We see a correlation
between the parameters [M1, γ ] and [(m/M)0, γ ] and an anti-
correlation between [β, γ ], [β,M1], and [(m/M)0,M1]. There
does not seem to be a correlation between [β, (m/M)0].

4.5. Introducing Scatter

Up until now we have assumed that there is a one-to-one,
deterministic relationship between halo mass and stellar mass.
However, in nature, we expect that two halos of the same mass M
may harbor galaxies with different stellar masses, since they can
have different halo concentrations, spin parameters, and merger
histories.

For each halo of mass M, we now assign a stellar mass m
drawn from a lognormal distribution with a mean value given
by our previous expression for m(M) (Equation (2)), with a
variance of σ 2

m. We assume that the variance is a constant for
all halo masses, which means that the percent deviation from
m is the same for every galaxy. This is consistent with other

Figure 5. Correlations between the model parameters. The panels show contours
of constant χ2 (i.e., constant probability) for the fit including constraints from
the SMF only. The parameter pairs are indicated in each panel.

Table 2
Fitting Results for Stellar-to-halo Mass Relationship

log M1 (m/M)0 β γ χ2
r (Φ) χ2

r (wp)

Best fit 11.899 0.02817 1.068 0.611 1.42 4.21
σ + 0.026 0.00063 0.051 0.012
σ− 0.024 0.00057 0.044 0.010

Notes. Including scatter σm = 0.15. All masses are in units of M⊙.

halo occupation models, SAMs and satellite kinematics (Cooray
2006; van den Bosch et al. 2007; More et al. 2009b).

Assuming a value of σm = 0.15 dex and fitting the SMF only,
we find the values given in Table 2. These values lie within the
(2σ ) error bars of the best-fit values that we obtained with no
scatter. The largest change is on the value of γ , which controls
the slope of the SHM relation at large halo masses. The SMF
and the projected CFs for the model including scatter are shown
in Figures 1 and 2, respectively, and show very good agreement
with the observed data.

In Figure 6, we compare our model without scatter with the
model including scatter. We have also included the relation
between halo mass and the average stellar mass. Especially
at the massive end scatter can influence the slope of the SMF,
since there are few massive galaxies. This has an impact on γ
and as all parameters are correlated scatter also affects the other
parameters. We thus see a difference between the model without
scatter and the most likely stellar mass in the model with scatter
in Figure 6.

Moster+10
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Semi-analytic models (SAMs)

Figure 3:

Visualization of representative predictions from a semi-analytic model. Symbol sizes represent the mass
of the host dark matter halo; the x-axis is arbitrary. Symbols connected by lines represent halo mergers.
Colors represent the mass of different galaxy components (red: hot gas; blue: cold gas; yellow: stars).
Several different final host halo masses are shown as indicated on the figure panels. Reproduced from
Hirschmann et al. (2012a).

that can’t be simulated explicitly, and tuning these parameters to match a subset of obser-
vations, 2) experimenting with different sub-grid recipes to achieve the best match to a set

of observations. Even the recipes themselves are in many cases very similar to the ones that

are commonly implemented in SAMs. Encouragingly, the two techniques have arrived at
the same qualitative conclusions about galaxy formation and evolution for all of the topics

that we will discuss in this article. For this reason, we structure this article largely in terms

of the physical processes and general insights into how they shape galaxy formation, giving
examples from both SAMs and numerical simulations.

Models of Galaxy Formation 13

Assume galaxies form inside dark 
matter halos → merger trees 
!
Use simple analytic models 
(‘recipes’) to determine galaxy 
properties 
‣ gas cooling 
‣ angular momentum of disk 
‣ effects of feedback, … 
!
Analytic prescriptions do not 
capture full complexity of galaxy 
formation, so parameters are 
tuned to match observations 
!
Computationally inexpensive, so 
can systematically explore 
parameter space

Somerville & Davé review, in prep.  



Hydrodynamical simulations of galaxy formation
Explicitly include baryons in the 
simulation and attempt to 
explicitly capture all important 
physics 
!
Limited by computational power, 
so still need to rely on ‘sub-
resolution models’ for processes 
occurring below resolution limit 
(e.g., star formation) 
!
Large-volume (~100 Mpc) hydro 
sims have typical resolution ~1 
kpc; zoom-ins ~10 pc 
!
Most detailed predictions, e.g. 
gas around galaxies (the circum-
galactic and intergalactic media)

Gas

Stars

Movie of 
FIRE zoom-in 

of MW-like 
galaxy
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When expressed in units of the critical density required for a flat cos-
mic geometry, the mean density of dark matter is usually denoted by 
Ωdm. Although a variety of dynamical tests have been used to constrain 
Ωdm, in general such tests give ambiguous results because velocities are 
induced by the unseen dark matter and the relation of its distribution 
to that of the visible tracers of structure is uncertain. The notion of a 
substantial bias in the galaxy distribution relative to that of dark matter 
was introduced in the 1980s to account for the fact that different samples 
of galaxies or clusters are not directly tracing the underlying matter 
distribution15–17. Defined simply as the ratio of the clustering strengths, 
the ‘bias function’ was also invoked to reconcile low dynamical estimates 
for the mass-to-light ratio of clusters with the high global value required 
in the theoretically preferred flat, Ωdm = 1 universe. But because massive 
clusters must contain approximately the universal mix of dark matter 
and baryons (ordinary matter), this uncertainty is neatly bypassed by 
comparing the measured baryon fraction in clusters with the universal 
fraction under the assumption that the mean baryon density, Ωb, is the 
value inferred from Big Bang nucleosynthesis18. Applied to the Coma 
cluster, this simple argument gave Ωdm ≤ 0.3 where the inequality arises 
because some or all of the dark matter could be baryonic18. This was 
the first determination of Ωdm < 1 that could not be explained away by 
invoking bias. Subsequent measurements have confirmed the result19 
which also agrees with recent independent estimates based, for example, 
on the relatively slow evolution of the abundance of galaxy clusters20,21 or 
on the detailed structure of fluctuations in the microwave background 
radiation22.

The mean baryon density implied by matching Big Bang nucle-
osynthesis to the observed abundances of the light elements is 
only Ωbh2 ≈ 0.02, where h denotes the Hubble constant in units of 
100 km s–1 Mpc–1. Dynamical estimates, although subject to bias uncer-
tainties, have long suggested that Ωm = Ωdm + Ωb ≈ 0.3, implying that the 
dark matter cannot be baryonic. Plausibly it is made up of the hypotheti-
cal elementary particles postulated in the 1980s, for example axions or 
the lowest mass supersymmetric partner of the known particles. Such 

low estimates of the mean matter density Ωm are incompatible with the 
flat geometry predicted by inflation unless the Universe contains an 
additional unclustered and dominant contribution to its energy density, 
for example a cosmological constant Λ such that Ωm + ΩΛ ≈ 1. Two large-
scale structure surveys carried out in the late 1980s, the APM (automated 
photographic measuring) photographic survey23 and the QDOT redshift 
survey of infrared galaxies24, showed that the power spectrum of the 
galaxy distribution, if it traces that of the mass on large scales, can be 
fitted by a simple CDM model only if the matter density is low, Ωm ≈ 0.3. 
This independent confirmation of the dynamical arguments led many 
to adopt the now standard model of cosmology, ΛCDM.

It was therefore with a mixture of amazement and déjà vu that cos-
mologists greeted the discovery in 1998 of an accelerated cosmic expan-
sion25,26. Two independent teams used distant type Ia supernovae to 
perform a classical observational test. These ‘standard candles’ can be 
observed out to redshifts beyond 1. Those at z ≥ 0.5 are fainter than 
expected, apparently indicating that the cosmic expansion is currently 
speeding up. Within the standard Friedmann cosmology, there is only 
one agent that can produce an accelerating expansion: the cosmological 
constant first introduced by Einstein, or its possibly time- or space-
dependent generalization, ‘dark energy’. The supernova evidence is 
consistent with ΩΛ ≈ 0.7, just the value required for the flat universe 
predicted by inflation.

The other key prediction of inflation, a density fluctuation field con-
sistent with amplified quantum noise, received empirical support from 
the discovery by the COsmic Background Explorer (COBE) satellite in 
1992 of small fluctuations in the temperature of the cosmic microwave 
background (CMB) radiation27. These reflect primordial density fluc-
tuations, modified by damping processes in the early Universe which 
depend on the matter and radiation content of the Universe. More recent 
measurements of the CMB28–32 culminating with those by the WMAP 
(Wilkinson Microwave Anisotropy Probe) satellite22 have provided a 
striking confirmation of the inflationary CDM model: the measured 
temperature fluctuation spectrum is nearly scale-invariant on large 

Figure 1 | The galaxy distribution obtained from 
spectroscopic redshift surveys and from mock 
catalogues constructed from cosmological 
simulations. The small slice at the top shows the 
CfA2 ‘Great Wall’3, with the Coma cluster at the 
centre. Drawn to the same scale is a small section 
of the SDSS, in which an even larger ‘Sloan 
Great Wall’ has been identified100. This is one of 
the largest observed structures in the Universe, 
containing over 10,000 galaxies and stretching 
over more than 1.37 billion light years. The cone 
on the left shows one-half of the 2dFGRS, which 
determined distances to more than 220,000 
galaxies in the southern sky out to a depth of 
2 billion light years. The SDSS has a similar 
depth but a larger solid angle and currently 
includes over 650,000 observed redshifts in the 
northern sky. At the bottom and on the right, 
mock galaxy surveys constructed using semi-
analytic techniques to simulate the formation 
and evolution of galaxies within the evolving 
dark matter distribution of the ‘Millennium’ 
simulation5 are shown, selected with matching 
survey geometries and magnitude limits.

Mille
nnium

sim
ulatio

n

M
ille

nnium
 si

m
ulat

ion
Sloan Great W

all

2dFGRS
1.5

1.0

0.5

0.05

0.10

0.15

0.20

Billion years CfA2 Great Wall

12h 11h

10 h

9 h

2 h
1 h

0
h

23
h

22
h

14
h

13h
12h

11h

10h

9h
8 h

9 h

10 h
11 h

12h 13h 14
h 15

h
16

h

17
h

8 h

9 h

10 h
11 h12h13h

14h

15
h

16
h

17
h

5,000

5,000
10,000

15
,0

00
20,0

00
25,0

00

10,000

15,000
20,000

25,000

0.20

0.5

1.0

1.5

0.15

0.10

0.0.5

Redshift z

cz (km
 s –1)

cz
 (k

m
 s

–1 )

Lookback tim
e in billio

n years

Redshift 
z

3h

2h
1h

0
h

23
h

22
h 3 h

13
h

14
h

1138

NATURE|Vol 440|27 April 2006INSIGHT REVIEW

Nature  Publishing Group ©2006

Springel, Frenk, White 06

When populated with 
galaxies, the cosmic 
web of dark matter 
predicted by 
cosmological N-body 
simulations explains the 
observed clustering of 
galaxies 
!

→ strong evidence in 
support of gravitational 
instability-induced large-
scale structure as 
predicted by ΛCDM 

Galaxy clustering

+SAM



Correlations functions

Clustering is made quantitative 
using correlation functions

which quantify the ‘excess 
probability’ of finding a galaxy 
(or halo) close to another one

thanwas possible in earlier work39: almost five orders ofmagnitude in
wavenumber k.
At present, the acoustic oscillations in the matter power spectrum

are expected to fall in the transition region between linear and
nonlinear scales. In Fig. 6, we examine the matter power spectrum
in our simulation in the region of the oscillations. Dividing by the
smooth power spectrum of a LCDM model with no baryons40

highlights the baryonic features in the initial power spectrum of
the simulation, although there is substantial scatter owing to the
small number of large-scale modes. Because linear growth preserves
the relative mode amplitudes, we can approximately correct for this
scatter by scaling the measured power in each bin by a multiplicative
factor based on the initial difference between the actual bin power
and the mean power expected in our LCDM model. This makes the
effects of nonlinear evolution on the baryon oscillations more clearly
visible. As Fig. 6 shows, nonlinear evolution not only accelerates
growth but also reduces the baryon oscillations: scales near peaks
grow slightly more slowly than scales near troughs. This is a
consequence of the mode–mode coupling characteristic of nonlinear
growth. In spite of these effects, the first two ‘acoustic peaks’ (at
k < 0.07 and k < 0.13hMpc21, respectively) in the dark matter
distribution do survive in distorted form until the present day (see
Fig. 6f).
Are the baryon wiggles also present in the galaxy distribution?

Fig. 6 shows that the answer to this important question is “yes”. The
z ¼ 0 panel (Fig. 6f) shows the power spectrum for all model galaxies
brighter than MB ¼ 217 (MB is the magnitude in the optical blue
waveband). On the largest scales, the galaxy power spectrum has the
same shape as that of the dark matter, but with slightly lower
amplitude corresponding to an ‘antibias’ of 8%. Samples of brighter
galaxies show less antibias, while for the brightest galaxies, the bias
becomes slightly positive. Figure 6d, e also shows measurements of
the power spectrum of luminous galaxies at redshifts z ¼ 0.98 and
z ¼ 3.06. Galaxies at z ¼ 0.98 were selected to have a magnitude
MB , 2 19 in the restframe, whereas galaxies at z ¼ 3.06 were
selected to have stellar mass larger than 5.83 £ 109h21M(, corre-
sponding to a space density of 8 £ 1023h3Mpc23, similar to that of

the Lyman-break galaxies observed at z < 3 (ref. 41). Signatures of
the first two acoustic peaks are clearly visible at both redshifts, even
though the density field of the z ¼ 3 galaxies is much more strongly
biased with respect to the dark matter (by a factor b ¼ 2.7, where
b ¼ [Pgal(k)/Pdm(k)]

1/2) than at low redshift. Selecting galaxies by
their star-formation rate rather than their stellar mass (above
10.6M(yr21 for an equal space density at z ¼ 3) produces very
similar results.
Our analysis demonstrates conclusively that baryon wiggles

should indeed be present in the galaxy distribution out to redshift
z ¼ 3. This has been assumed, but not justified, in recent proposals to
use evolution of the large-scale galaxy distribution to constrain
the nature of the dark energy. To establish whether the baryon
oscillations can be measured in practice with the requisite accu-
racy will require detailed modelling of the selection criteria of an
actual survey, and a thorough understanding of the systematic
effects that will inevitably be present in real data. These issues can
only be properly addressed by means of specially designed mock

 
Figure 4 | Galaxy two-point correlation function, y(r), at the present epoch
as a function of separation r. Red symbols (with vanishingly small Poisson
error bars) show measurements for model galaxies brighter than
MK ¼ 223, where MK is the magnitude in the K-band. Data for the large
spectroscopic redshift survey 2dFGRS (ref. 28) are shown as blue diamonds
together with their 1-j error bars. The SDSS (ref. 34) and APM (ref. 31)
surveys give similar results. Both for the observational data and for the
simulated galaxies, the correlation function is very close to a power law for
r # 20h21Mpc. By contrast, the correlation function for the dark matter
(dashed green line) deviates strongly from a power law.

 
 

Figure 5 | Galaxy clustering as a function of luminosity and colour. a, the
two-point correlation function of our galaxy catalogue at z ¼ 0 split by
luminosity in the bJ -band filter (symbols with 1-j error bars) Brighter
galaxies are more strongly clustered, in quantitative agreement with
observations33 (dashed lines). Splitting galaxies according to colour (b), we
find that red galaxies are more strongly clustered with a steeper correlation
slope than blue galaxies. Observations35 (dashed lines) show a similar trend,
although the difference in clustering amplitude is smaller than in this
particular semi-analytic model.
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The DASI experiment (Pryke et al., 2002) gives

n = 1.01+0.08
−0.06 (9)

where the error bars are 68% confidence limits. This result
comes from fitting the DASI data alone, making typical prior
assumptions about such things as the Hubble constant. The
recent WMAP data gives a value

n = 0.99 ± 0.04 (10)

(Spergel et al., 2003). (This latter value comes from the
WMAP data alone, no other data is taken into account.)
Other similar numbers come from Wang et al. (2002) and
Miller et al. (2002b).
It is perhaps appropriate to point out that this fit comes

from data on scales bigger than the scale of significant galaxy
clustering and that it is a matter of belief that the primordial
power law continued in the same manner to smaller scales. In
fact, more complex inflationary models predict a slowly vary-
ing exponent (spectral index) (see, e.g., Kosowsky and Turner
(1995)); this is in accordance with the WMAP data. The
scales which are relevant to the clustering of galaxies are just
those scales where the effects of the recombination process
on the fluctuation spectrum are the greatest. We believe we
understand that process fully (Hu et al., 2001, 1997) and so
we have no hesitation in saying what are the consequences of
having an initial n = 1 power spectrum. That, and the success
of theN -body experiments, provide a good basis for the belief
that n ≈ 1 on galaxy clustering scales. Anyway, it is probable
that the Sunyaev-Zel’dovich effect (Sunyaev and Zel’dovich,
1980) will dominate on the scales we are interested in so we
may never see the recombination-damped primordial fluctua-
tions on such scales.
We therefore have a classical initial value problem: the dif-

ficulty lies mainly in knowing what physics, subsequent to
recombination, our solution will need as input and knowing
how to compare the results of the consequent numerical sim-
ulations with observation. CMB measurements can also give
us valuable clues for these later epochs in the evolution of the
universe. A good example is the discovery of significant large-
scale CMB polarization by the WMAP team (Kogut et al.,
2003) that pushes the secondary re-ionization (formation of
the first generation of stars) back to redshifts z ≈ 20.

V. MEASUREMENTS OF CLUSTERING

A. The discovery of power-law clustering

The pioneeringwork of Rubin and Limber has already been
mentioned. These early authors were limited by the nature of
the catalogs that existed at the time and the means to analyze
the data – there were no computers!
It was Totsuji and Kihara (1969) and, independently,

Peebles (1974b) who were first to present a computer-
based analysis of a complete catalog of galaxies. Tot-
suji and Kihara used the published Lick counts in cells
from Shane and Wirtanen (1967), while Peebles and cowork-
ers analysed a number of catalogs: the Reference catalog

of Bright Galaxies, the Zwicky catalog, the Lick catalog
and later on the very deep Jagellonian field (Peebles, 1975;
Peebles and Groth, 1975; Peebles and Hauser, 1974). All this
work was done on the projected distribution of galaxies since
little or no redshift information was available.
The central discovery was that the two-point correlation

function describing the deviation of the galaxy distribution
from homogeneity scales like a simple power law over a sub-
stantial range of distances. This result has stood firm through
numerous analyses of diverse catalogs over the subsequent
decades.
The amplitudes of the correlation functions calculated from

the different catalogs were found to scale in accordance with
the nominal depth of the catalog. This was one of the first di-
rect proofs that the Universe is homogeneous. Before that we
knew about the isotropy of the galaxy distribution at different
depths and could only infer homogeneity by arguing that we
were not at the center of the Universe.

B. The correlation function: galaxies

1. Definitions and scaling

The definition of the correlation function used in cosmol-
ogy differs slightly from the definition used in other fields. In
cosmology we have a nonzero mean field (the mean density
of the Universe) superposed on which are the fluctuations that
correspond to the galaxies and galaxy clusters. Since the Uni-
verse is homogeneous on the largest scales, the correlations
tend to zero on these scales.
On occasion, people have tried to use the standard definition

and in doing so have come up with anomalous conclusions.
The right definition is: In cosmology, the 2-point galaxy

correlation function is defined as a measure of the excess
probability, relative to a Poisson distribution, of finding two
galaxies at the volume elements dV1 and dV2 separated by a
vector distance r:

dP12 = n2[1 + ξ(r)]dV1dV2, (11)

where n is the mean number density over the whole sample
volume. When homogeneity5 and isotropy are assumed ξ(r)
depends only on the distance r = |r|. From Eq. (11), it is
straightforward to derive the expression for the conditional
probability that a galaxy lies at dV at distance r given that
there is a galaxy at the origin of r.

dP = n[1 + ξ(r)]dV. (12)

Therefore, ξ(r) measures the clustering in excess (ξ(r) > 0)
or in defect (ξ(r) < 0) compared with a random Poisson point
distribution, for which ξ(r) = 0. It is worth to mention that in
statistical mechanics the correlation function normally used is
g(r) = 1+ξ(r)which is called the radial distribution function

5 This property is called stationarity in point field statistics.



N-body algorithms
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Barnes-Hut tree
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Adaptive mesh refinement

Generally not as accurate at tree codes for gravity but useful because 
hydro often solved on a grid, too.



Cosmological N-body simulations have grown rapidly in size over the 
last three decades
 

"N" AS A FUNCTION OF TIME

Computers double 
their speed every 
18 months 
(Moore's law)

N-body 
simulations have 
doubled their size 
every 16-17 
months

Recently, growth 
has accelerated 
further. 
The Millennium Run 
should have become 
possible in 2010 – 
we it was done in 
2004.
It took ~350000 CPU 
hours, about a month 
on 512 cores.

1 month with 
direct summation

10 million years with
direct summation

Springel

Modern gravity solvers vs. direct summation

N



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:

Hydro solvers

grid-based Godunov schemes 
Athena, ENZO, RAMSES, …

e.g., smooth particle hydrodynamics  
GADGET, Gasoline…




