ASTRON 449: Stellar (Galactic) Dynamics

Fall 2014

In this course, we will cover

- the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes)
- theoretical tools for research on galaxies: potential theory, orbit integration, statistical description of stellar systems, stability of stellar systems, disk dynamics, interactions of stellar systems
- numerical methods for N-body simulations
- time permitting: kinetic theory, basics of galaxy formation

This will allow us, e.g.

- to measure the masses of stellar systems and massive black holes
- understand the origin of spiral structure in galactic disks and the formation of elliptical galaxies
- understand how the dynamics of galaxies differ from the dynamics of dense star clusters
- prepare for research on galaxies, and in many other areas of astrophysics

Galaxy phenomenology

Reading: BT2, chap. 1 intro and section 1.1

What is a galaxy? The Milky Way

Gravity turns gas into stars

(all in a halo of dark matter)

Galaxies are the building blocks of the Universe Hubble Space Telescope Ultra-Deep Field

Luminosity and mass functions

Schechter fits:
$$\Phi(L)dL = \frac{dL}{L_*} \exp(-L/L_*) \left[\phi_{*,1} \left(\frac{L}{L_*} \right)^{\alpha_1} + \phi_{*,2} \left(\frac{L}{L_*} \right)^{\alpha_2} \right]$$

 $M = -2.5 \log_{10} L + const.$

Local galaxies from SDSS; Blanton & Moustakas 08

Hubble's morphological classes

bulge or spheroidal component

Not a time or physical sequence

Galaxy rotation curves: evidence for dark matter

Galaxy clusters

- most massive gravitational bound objects in the Universe
- contain up to thousands of galaxies
- ▶ most baryons intracluster gas, *T*~10⁷-10⁸ K gas
- ▶ smaller collections of bound galaxies are called 'groups'

Bullet cluster: more evidence for dark matter

- ▶ two clusters that recently collided
- gravitational mass traced by weak lensing (blue)
- ▶ gas (collisional) stuck in middle

Local Galactic Group

wellstudied MW satellites

_ most massive

Open clusters

- ► ~10²-10⁴ stars, irregular
- ▶ most younger than 1 Gyr, in disk
- ▶ most stars probably formed in open clusters, which have since dissolved

Globular clusters

- ▶ ~10⁴-10⁶ stars, nearly spherical
- ▶ little dust, gas, young stars, or dark matter
- ▶ central stellar density $10^4 \, \text{M}_{\text{sun}} \, \text{pc}^{-3}$ (compared to $0.05 \, \text{M}_{\text{sun}} \, \text{pc}^{-3}$ for solar neighborhood) \Rightarrow direct interactions between stars (collisional effects)

Galaxy collisions

- ▶ collisions between galaxies are common, e.g. MW and Andromeda will merge in ~3 Gyr
- ▶ mass ratio >1:3 → major merger (otherwise, minor)
- reate tidal features, stellar bulges

Formation of ellipticals by major mergers of two disk galaxies

Note: stars typically do not collide in a galaxy collision (collisionless dynamics)!

Nuclear black holes

- ▶ all (massive) galaxies appear to have one
- ▶ in MW (Sgr A*), M_{BH}=4×10⁶ M_{sun}, measured using individual stellar orbits

Active galactic nuclei

- ▶ accreting nuclear black holes visible as AGN
- ▶ the most luminous AGN are called quasars (can outshine entire host galaxy)
- ▶ in local Universe, quasars are associated with galaxy mergers

Scaling relations, and other correlations

Tully-Fisher: luminosity - circular velocity for spirals

Faber-Jackson: luminosity - velocity dispersion for ellipticals

Projection of tighter 'fundamental plane' for ellipticals in effective radiusvelocity dispersion-surface brightness space (see BT2, p. 23)

M- σ : black hole mass - stellar bulge velocity dispersion

Magorrian: $M_{BH} \sim 0.002 M_{bulge}$

 $\log_{10}(M_{\bullet}/M_{\odot}) = 8.32 + 5.64 \log_{10}(\sigma/200 \,\mathrm{km} \,\mathrm{s}^{-1})$

Color, luminosity, morphology correlations

Kennicutt-Schmidt law: star formation rate - gas mass surface density

Gravity only:

 $\frac{\text{Star form.}}{\text{rate}} \approx \frac{\text{Gas mass}}{\text{Free fall time}}$

⇒ stellar feedback

Redshift evolution

Cosmological simulations of galaxy formation

- Follow dark matter, gas, and stars from Big Bang initial conditions
- Reveal complex formation histories (smooth gas accretion, galaxy mergers, effects of feedback)
- Galaxies change with redshift: clumpy → smooth

